Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

De-Suo Yang

Department of Chemistry, Baoji College of Arts and Sciences, Baoji 721007, People's Republic of China

Correspondence e-mail:
desuoyang@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.043$
$w R$ factor $=0.117$
Data-to-parameter ratio $=19.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[4-bromo-2-(cyclohexyliminomethyl)phenolato]copper(II)

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrNO}\right)_{2}\right]$, is a mononuclear copper(II) complex. The Cu atom is four-coordinated by two N atoms and two O atoms from two Schiff base ligands in a slightly distorted tetrahedral geometry.

Comment

Transition metal compounds containing Schiff base ligands have been of interest for a long time (Archer \& Wang, 1990; Chang et al., 1998). These compounds play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular architectures (Costamagna et al., 1992; Bhatia et al., 1981). As an extension of work on the structural characterization of Schiff base $\mathrm{Cu}^{\text {II }}$ compounds, the crystal structure of the title compound, (I), is reported here.

(I)

Compound (I) is a mononuclear $\mathrm{Cu}^{\mathrm{II}}$ complex (Fig. 1). The Cu atom is coordinated by two O and two N atoms from two Schiff base ligands. This $\mathrm{CuO}_{2} \mathrm{~N}_{2}$ coordination forms a distorted tetrahedral geometry, with angles subtended at the $\mathrm{Cu}^{\text {II }}$ atom in the range 93.69 (11) -122.65 (12) ${ }^{\circ}$ (Table 1). The average $\mathrm{Cu}-\mathrm{O}$ bond length $[1.919$ (3) \AA] is a little longer than the value of 1.888 (3) \AA observed in a similar Schiff base $\mathrm{Cu}^{\mathrm{II}}$ compound, (II), bis(N-octylsalicylideniminato- N, O)copper(II) (Zhang et al., 2001). The mean $\mathrm{Cu}-\mathrm{N}$ bond length [2.026 (3) \AA] is also a little longer than the value of 2.009 (3) \AA observed in (II). As expected, the cyclohexyl groups in the ligands adopt a chair form to minimize steric effects. There are no short molecular contacts ($<3.2 \AA$) in the crystal structure (Fig. 2).

Experimental

Cyclohexylamine ($0.2 \mathrm{mmol}, 11.4 \mathrm{mg}$) and 5-bromosalicylaldehyde $(0.2 \mathrm{mmol}, 40.4 \mathrm{mg})$ were dissolved in $\mathrm{MeOH}(10 \mathrm{ml})$. The mixture was stirred for 10 min to give a clear yellow solution. To this solution was added an MeOH solution (10 ml) of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ $(1.0 \mathrm{mmol}, 25.4 \mathrm{mg})$, with stirring. After keeping the resulting solution at room temperature in air for 11 d , blue block-shaped crystals of (I) were formed on slow evaporation of the solvent. The crystals were
collected, washed three times with MeOH and dried in a vacuum desiccator using anhydrous CaCl_{2} (yield 61.3%). Analysis found: C 49.7, $\mathrm{H} 4.9, \mathrm{~N} 4.6 \%$; calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{Br}_{2} \mathrm{CuN}_{2} \mathrm{O}_{2}$: C 49.9, $\mathrm{H} 4.8, \mathrm{~N}$ 4.5\%.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrNO}\right)_{2}\right]$
$M_{r}=625.88$
Orthorhombic, Pbca
$a=14.996$ (1) \AA
$b=13.597$ (1) \AA
$c=25.156$ (2) \AA
$V=5129.3(7) \AA^{3}$
$Z=8$
$D_{x}=1.621 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.433, T_{\text {max }}=0.487$
56364 measured reflections

Mo $K \alpha$ radiation

Cell parameters from 10170
reflections
$\theta=2.6-22.8^{\circ}$
$\mu=3.99 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, blue
$0.22 \times 0.21 \times 0.18 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.117$
$S=1.03$
5866 reflections
298 parameters
H -atom parameters constrained

Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
The crystal packing of (I), viewed along the b axis. H atoms have been omitted.

Bruker (2002). SAINT (Version 6.02) and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Chang, S., Jones, L., Wang, C. M., Henling, L. M. \& Grubbs, R. H. (1998). Organometallics, 17, 3460-3465.
Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. \& Mena, G. (1992). Coord. Chem. Rev. 119, 67-88.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Zhang, L. Z., Bu, P.-Y., Wang, L.-J. \& Cheng, P. (2001). Acta Cryst. C57, 11661167.

